Work, Energy and Power

a) 27:64

a) 1:19

ground is a) $\sqrt{24} \text{ ms}^{-1}$

a) $\sqrt{2} \text{ ms}^{-1}$

Objective: Solving problem based on Work, KE, PE and power

b) 1:1

b) 2:15

b) $\sqrt{12} \text{ ms}^{-1}$

b) $(\sqrt{2}-1) \text{ ms}^{-1}$

height of 1/5th of its maximum height is

densities are in the ratio 3:2, the ratio of their kinetic energies is

1. Two spheres whose radii are in the ratio 1:2 are moving with their velocities in the ratio 3:d) If their

2. A body is projected from the ground at an angle 30° with the horizontal. Ratio of PE to KE when it is a

3. A machine has an efficiency of 75%. It consumes 16 J of energy to lift up a body of mass 2 kg through a certain height. When the body is released from this height, the velocity attained by it as it reaches the

4. A man who is running has half the kinetic energy of a boy of half his mass. When the man speeds up by

5. A body of weight 40 N is projected vertically up. At an intermediate point its P.E, K.E are 80 J, 120 J

1ms⁻¹ his kinetic energy becomes equal to that of the boy. Initial speed of the man is

c) 2:13

c) $\sqrt{18} \text{ ms}^{-1}$

c) 2 ms⁻¹

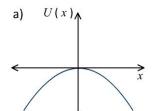
d) 9:64

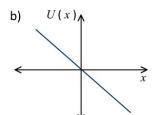
d) 1:17

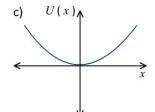
d) $\sqrt{9} \text{ ms}^{-1}$

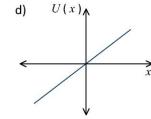
d) $(\sqrt{2} + 1) \text{ ms}^{-1}$

	respectively. Its tin	ne of flight is (assume g b) 3 s	= 10 ms ⁻²) c) 4 s	d) 1 s	
6.	A particle moves of	n rough horizontal grou	•	. If 3/4 th of its kinetic energy	is lost
	a) $\frac{u}{2gt}$	b) $\frac{u}{4gt}$	c) $\frac{3u}{4gt}$	d) $\frac{u}{gt}$	
7.	the speed of the h		by 4 ms ⁻¹ , its new kinetic e	gy of another body of mass m_0 nergy becomes equal to the k d) 2 ms^{-1}	
8.	of kinetic friction b	_	e is 0.5. When released from	g as shown in the figure. Coeff n rest, their common speed as	
		m	1		
		Т		m_2	
	a) 2ms ⁻¹	b) 3ms ⁻¹	c) zero	d) 1ms ⁻¹	
9.		I from the top of a tower	${\sf r}$ of height ${\it h}$ with an initial ${\sf s}$	peed of $\it u$ at an unknown angl	le. On
		b) $u + \sqrt{2gh}$	с) и	d) $\sqrt{u^2 + 2gh}$	
10.	Potential energy of	f a body of mass 1kg, free	e to move along the $\it x$ – axis	is given by $V(x) = \left(\frac{x^4}{4} - \frac{x^2}{2}\right)$	
	If total mechanical	energy of the body is 2J,	then the maximum speed o	of the body (in ms ⁻¹) is	
	a) $\frac{3}{\sqrt{2}}$	b) $\sqrt{2}$	c) $\frac{1}{\sqrt{2}}$	d) 2	
11.				el road against a constant extormed of the car is doing work will b d) $(ma - R) v$	
12.	A motor boat mov	ves in a river with veloc	city $v = 7\hat{i} + 2\hat{j} - 5\hat{k} \text{ ms}^{-1}$ If	the resisting force due to wa	iter is
	$F = 9\hat{i} + 3\hat{j} - 3\hat{k} $ N	, then power of the mot	tor boat is		
12	a) 13 W	b) 69 W	c) 12 W	d) 84 W $\frac{1}{2}$	ion of
15.		the by the cord on the blows $M = Mgd/4$	ck is	d) -3 $Mgd/4$	011 01
14.	A simple pendulun	n of length 1m has a bob	of mass 100 g. It is displace	ed through an angle of 60° from the mean position is (g = 10 r	ns ⁻²)


Work, Energy and Power


- a) 0.025 J
- b) 0.5 J


- c) 1.0 J
- d) 1.4 J
- 15. Two identical cylindrical vessels with their bases at the same level contain liquid of density ρ . The height of the liquid in the vessels is at h_1 and h_2 respectively. The cylinders are now interconnected. If the area of the base of each cylinder is A then the work done by the gravity as the level of liquid become equal in the cylinders is
 - a) $A\rho g\left(\frac{h_1-h_2}{2}\right)$
- b) $\frac{A\rho g(h_1 h_2)^2}{2}$ c) $A\rho g(\frac{h_1 h_2}{4})$ d) $A\rho g(\frac{h_1 h_2}{4})^2$
- 16. A body of mass m is moved from rest along a straight line by an engine delivering constant power P. The velocity of the body at an instant of time t is


- c) $\sqrt{\frac{Pt}{2m}}$
- d) $\frac{Pt}{2m}$
- 17. The time of ascent and descent of a particle thrown up vertically is t_1 and t_2 respectively. If air is assumed to exert a constant force on the particle opposite to the direction of motion then
 - a) $t_1 > t_2$
 - b) $t_1 = t_2$
 - c) $t_1 < t_2$
 - d) May be any one of the above depending on the weight of the particle
- 18. A particle moves along a straight line such that its retardation is proportional to its displacement. The loss in its kinetic energy for a displacement x is proportional to
- b) x^2

- 19. A particle is placed at the origin and a force F(x) = kx (k is a positive constant) acts on it. If U(0) = 0, the graph of variation of U(x) is given by (U is the potential energy of the particle)

- 20. A car of mass m and a truck of mass M are initially in motion. They are brought to rest under different conditions. Choose the correct statements from the following (more than one option may be correct)
 - If car and truck have same initial momentum and are subjected to same retardation, they come to rest in the same interval of time
 - If car and truck have same initial kinetic energy and are subjected to same breaking force, they cover same distance as they are brought to rest
 - If car and truck have same initial velocity and are subjected to same retardation, they come to rest in the same interval of time
 - If car and truck have same initial momentum and are to be brought to rest in the same distance then the breaking force of truck should be equal to that of the car

Work, Energy and Power

Answers

- 1. a
- 2. a
- 3. b
- 4. d
- 5. a
- 6. a
- 7. c
- 0 2
- 9. d
- 10. d
- 11. c
- 12. d
- 13. d
- 14. b
- 15. b
- 16. a
- 17. b
- 18. b
- 19. a
- 20. b, c